1
					. Introduction  
					Waste heat is defined as the residual heat after heat recovery within a process, heat recovery between several  
					processing units on a site, and residual heat rejected to cooling water and air from a site utility system. According to  
					IPCC (2010 data) Industry is responsible for 32% of worldwide greenhouse gas emissions, i.e. about 16 billion tonnes  
					of CO2 equivalent, including indirect emissions due to electricity used in industrial plants. According to the  
					International Energy Agency, energy/ waste heat recovery together with recycling is expected to bring 9% of the  
					necessary emissions reduction. Waste heat recovery (WHR) can significantly improve the site energy efficiency  
					which has been identified as the most cost-effective measure for carbon dioxide mitigation especially in the short and  
					medium term.  
					1
					.1 Opportunities to achieve a more competitive, secure and sustainable energy system and to meet its long-  
					term 2050 greenhouse gas reductions target  
					
					
					
					
					
					
					a 40% cut in greenhouse gas emissions compared to 1990 levels;  
					at least a 32% share of renewable energy consumption, with an upward revisions clause for 2023;  
					indicative target for an improvement in energy efficiency at EU level of at least 32.5%, following on from  
					the existing 20% target for 2020.  
					In this context, efficient recovery of waste heat in the form of power, heat and chilling can contribute in three ways:  
					(
					(
					i)  
					ii)  
					supplying power and heat in the respective grid;  
					balancing the grid (both power and thermal) against the fluctuation caused by increased share of variable  
					renewables in the energy mix;  
					(
					iii)  
					increasing energy efficiency and hence the energy security of waste heat generating site through saving  
					of primary energy.  
					1
					.2 Barriers of WHR adoption  
					Although there are huge potential and numerous benefits of WHR, there are some barriers that impact the economy  
					and effectiveness of heat recovery equipment and impede its wider installation.  
					Barrier 1: Lack of justification: The lack of accurate evaluation of cost benefit of the WHR project does not build  
					confidence.  
					Barrier 2: Long payback period: Costs of heat recovery equipment, auxiliary systems, and design services lead to  
					long payback periods in certain applications.  
					Barrier 3: Composition of exhaust stream: Many exhaust streams are contaminated or containing fouling  
					particulates of some form. Resulting issues can be clogging and abrasion of devices, and corrosion or deposit  
					formation when temperatures are reduced below dew points of certain components when heat is extracted from a  
					stream. These aspects can limit the possibility to recover heat from some sources, or significantly increase the  
					associated costs.  
					Barrier 4: Economy of Scale: Equipment costs favour large-scale heat recovery systems and create challenges for  
					small-scale operations.  
					Barrier 5: Intermittent Character of waste heat source: This might cause fatigue in the heat exchange materials  
					due to thermal cycling. Moreover, the intermittent character of the recoverable energy flows and its variations during  
					normal operating conditions might not ensure energy efficient performance.  
					Barrier 6: Lack of awareness and initiatives: Industrial engineers often do not have the time or knowledge to  
					explore all waste heat recovery methods and are “unsure” or “uninformed” of the benefits of WHR. Novel methods  
					of WHR are often ignored due to lack of understanding.  
				Barrier 7: Lack of space: In some cases, spaces for installing WHR devices are very limited. This becomes more  
					complicated when additional energy storage needs to be installed while recovering waste heat from intermittent  
					sources.  
					Barrier 8: Expensive consultancy service: Expensive consultancy is required from start of potential WHR projects.  
					It demotivates WHR initiatives.  
					1
					.3 Features of the tool  
					This tool is designed addressing the above stated barriers of WHR adoption. The main features of the tool are:  
					
					
					It will characterise waste heat stream i.e., the exhaust flue gas processing minimum numbers of user inputs;  
					It will provide dimensions of WHR devices such as heat pipe heat exchanger (HPHE) and thermal storages  
					for a specific WHR application;  
					
					
					
					It will provide stand alone solution where user will select the capacity of HPHE and the tool will give  
					different options for thermal energy storage;  
					It will provide multiple options of WHR solution depending on the flue gas temperature and the amount of  
					heat to be recovered;  
					It will provide informed investment decision support on the marginal investment (on WHR technology)  
					through evaluating (for each of the options for WHR solution) different financial parameters such as payback  
					period, net present value (NPV), internal rate of return (IRR), return on investment (ROI) etc.;  
					
					
					To account the uncertainty of different variables such as retrofitting factor, discount rate etc., it will perform  
					sensitivity analysis to determine the impact of these factors on payback period, NPV, IRR, ROI;  
					It will evaluate environmental performance for each of the options for WHR solution;  
					2
					. Functional modules of the tool  
					There are five modules which are:  
					1
					2
					3
					4
					5
					. Flue Gas Characterization  
					. Waste heat utilisation  
					. WHR solution  
					. Cost performance  
					. Environmental performance  
					User will provide data related to waste heat source through module 1 i.e., “flue Gas Characterization” module. Results  
					of module 1 and user data will be processed and fed to other modules to formulate different waste heat recovery  
					solutions along with the respective cost and environmental performances.  
					2
					.1 Module 1- Flue Gas Characterization  
					Processing the user data, this module will predict the quality and quantity of the available waste heat and properties  
					of flue gas exiting the furnace. Using the temperature, flow measurement and the stream composition data, waste  
					heat stream will be characterised in terms of quantity and quality. For instance, if a waste heat stream contains ‘n’  
					th  
					1
					number components, then the heat content in the I component can be expressed as:  
					1
					Waste Heat Recovery: Technology and Opportunities in U.S. Industry; Prepared by BCS, Incorporated March 2008  
				th  
					i
					Where h (t) is the enthalpy of the I species at the specified temperature T, r is the reference temperature (either  
					ambient temperature or the minimum allowed temperature of WHR), and Cp,I is the specific heat capacity of the  
					2
					species as a function of temperature. Cp can be expressed as:  
					p
					Where, T in Kelvin, C in kJ/kmol, K  
					After adding the enthalpies of all the constituents, the heat content of the waste stream will be determined. To  
					calculate the heat content of the flue gas, all the constituent gases (such as N  
					considered as ideal gas.  
					2
					, H  
					2
					, CO  
					2
					, CO, SO  
					2
					, H  
					2
					O
					(g) etc.) will be  
					Quantity  
					The key information of the results is outlined in the following table:  
					Item  
					Unit  
					Average density of flue gas (ambient to flue gas temperature)  
					Average density of flue gas (max allow temp of flue gas)  
					kg/m3  
					kg/m3  
					kW  
					Waste heat energy flow rate through the flue gas (w.r.t. ambient temperature)  
					Actual recoverable waste heat energy flow rate (w.r.t. maximum allowable temperature*) kW  
					Average specific heat capacity of flue gas (ambient to flue gas temperature)  
					Average specific heat capacity of flue gas (ambient to flue gas temperature)  
					kJ/kg.C  
					3
					kJ/m .C  
					kJ/kg.C  
					Average specific heat capacity of flue gas (maximum allowable temperature* of the flue  
					gas to flue gas temperature)  
					Average specific heat capacity of flue gas (maximum allowable temperature* of the flue  
					gas to flue gas temperature)  
					3
					kJ/m .C  
					*
					Maximum allowable temperature of the flue gas = Acid dew point temperature + safety margin  
					The tool will offer three options to characterise flue gas. Based on the available information, user can select any of  
					the three options.  
					Option 1 (Flue Gas Characterization)  
					2
					Source: B.G. Kyle, 1984, Chemical and Process Thermodynamics  
				Mandatory input (option 1)  
					3
					1
					2
					3
					4
					5
					6
					. Natural gas (Fuel) flow rate, m /s  
					. O concentration in exhaust, %  
					. Flue gas temperature, C  
					. Furnace operating cycle  
					. Furnace ON time  
					2
					o
					. Furnace OFF time  
					Optional input (option 1)  
					1
					2
					3
					4
					. Natural gas composition  
					o
					. Acid dew point temperature, C  
					o
					. Ambient temperature, C  
					3
					. Sp. Heat capacity of flue gas, kJ/m .C  
					Information flow diagram within option 1:  
					The logic and algorithm developed under the assumption of complete combustion. Other assumptions made under  
					option 1 of flue Gas Characterization (The corresponding values can be edited through admin panel) are listed in  
					the following table  
					Item  
					Unit Quantity Comments  
					o
					o
					Acid dew point temperature, C  
					Ambient temperature, C  
					Safety margin for acid dew point temperature, C  
					Pressure of the gaseous substance  
					C
					C
					C
					150 If corresponding user input is null  
					20 If corresponding user input is null  
					20 Internal design variable  
					o
					o
					o
					o
					atm  
					1 Internal design variable  
					Option 2 (Flue Gas Characterization)  
				Mandatory input (option 2)  
					3
					1
					2
					3
					4
					. Flue gas flow rate, m /s or kg/s  
					o
					. Flue gas temperature, C  
					. Furnace operating cycle  
					. Flue gas composition, %vol or %mass  
					(
					The default list of flue gas constituents)  
					Flue gas constituents  
					%Vol or %mass  
					N2  
					O2  
					CO  
					CO2  
					H2O  
					NO  
					N2O  
					NO2  
					SO2  
					SO3  
					C6H6  
					HCl  
					5
					6
					. Furnace ON time  
					. Furnace OFF time  
					Optional input (option 2)  
					o
					. Acid dew point temperature, C  
					o
					1
					2
					. Ambient temperature, C  
					Information flow diagram within option 2:  
				Assumptions made under option 2 of flue Gas Characterization (The corresponding values can be edited through  
					admin panel) are listed in the following table:  
					Item  
					Unit Quantity Comments  
					o
					o
					Acid dew point temperature, C  
					Ambient temperature, C  
					Safety margin for acid dew point temperature, C  
					Pressure of the gaseous substance  
					C
					C
					C
					150 If corresponding user input is null  
					20 If corresponding user input is null  
					20 Internal design variable  
					o
					o
					o
					o
					atm  
					1 Internal design variable  
					Option 3 (Flue Gas Characterization)  
					2
					.2. Module 2- Waste heat utilisation  
					andatory input (option 3)  
				3
					1
					2
					3
					. Natural gas (Fuel) flow rate, m /s  
					. Excess air, %  
					o
					. Flue gas temperature, C  
					Optional input (option 3)  
					1
					. Natural gas composition  
					Component (%Volume)  
					CH  
					4
					C
					2
					C
					3
					C
					4
					H
					H
					H
					6
					8
					10  
					CO  
					H
					2
					CO  
					2
					N
					2
					O
					2
					H
					2
					H
					2
					S
					O
					o
					2
					3
					. Acid dew point temperature, C  
					. Ambient temperature, C  
					o
					Information flow diagram within option 3:  
				The logic and algorithm developed under the assumption of complete combustion. Other assumptions made under  
					option 3 of flue Gas Characterization (The corresponding values can be edited through admin panel) are listed in  
					the following table  
					Item  
					Natural gas composition  
					Unit  
					Quantity Comments  
					96%  
					CH  
					4
					% vol  
					% vol  
					If corresponding user input is null  
					C
					2
					H
					6
					4%  
					o
					o
					Acid dew point temperature, C  
					C
					C
					C
					150 If corresponding user input is null  
					20 If corresponding user input is null  
					20 Internal design variable  
					o
					o
					Ambient temperature, C  
					o
					o
					Safety margin for acid dew point temperature, C  
					Pressure of the gaseous substance  
					atm  
					1 Internal design variable  
					Module 2- Waste heat utilisation  
					(
					This module will be developed in future)  
					To utilise the recovered waste, this module will incorporate six WHR technology options:  
					1
					2
					. Direct heat exchange via heat exchanger;  
					. Upgrading low grade heat through heat pump technologies  
					a. mechanical heat pump (MHP);  
					b. absorption heat pump (AHP);  
					c. absorption heat transformer (AHT);  
					3
					4
					. Absorption chiller (AbC) to produced chilled water;  
					. Rankine cycle (Organic Rankine cycle, ORC & steam Rankine cycle) to produce power.  
					This module will consider both onsite and offsite end use of recovered energy:  
					
					
					For onsite end use of recovered heat produced, whether directly via heat exchange or from heat upgrade  
					technologies, will be considered to be used for boiler feed water preheating, air preheating, space heating (within  
					the site), steam generation and hot utility reduction;  
					For onsite end use of recovered energy in the form of chilling will be considered to be used:  
					✓
					to replace electrically driven vapour compression chillers (used for process and space cooling in the site) to  
					save electrical power; and  
					✓
					to provide chilling to improve the power generation efficiency of a gas turbine, by reducing the compressor  
					inlet air temperature;  
					
					For onsite end use of recovered energy in the form of power will be considered to be used within the site to  
					reduce power import.  
					For offsite end use of recovered energy in the form heat, chilling and power will be considered to be exported to the  
					energy grid (such as power grid, central DHC network), neighbouring industries & local district heating and cooling  
					(
					DHC) network, large private facilities such as shopping centre, sport centre, hospital, university etc.  
					2
					.3. Module 3- WHR solution  
					In this module there are different submodules which includes:  
					
					
					
					Standalone solution  
					Cascaded solution  
					Component level solution  
					✓
					✓
					Heat Pipe Heat Exchanger (HPHE)  
					Thermal energy storage (TES)  
					Under the option of “Standalone solution”, user will select the capacity of HPHE, i.e., the amount of waste heat to  
					be recovered from the flue gas exiting the furnace. The tool will provide different options of TES along with overall  
					cost of the solution and dimensions of the core components of the solution.  
					Under the option of “Cascaded solution”, analysing the results of the flue gas characterisation module, tool will offer  
					multiple options of solution along with the overall cost of the solution, dimensions and cost of the core components  
					of the solution.  
				Under the option of “Component level solution”, the tool will provide cost and dimensions of the core components  
					of the solution.  
					The main components of WHR solution are  
					•
					•
					Heat Pipe Heat Exchanger (HPHE)  
					Dual Media Thermocline (DMT)  
					A HPHE is a liquid coupled indirect heat transfer type heat exchanger and employs a number of individually-sealed  
					or groups of sealed heat pipes or thermosyphons as the major heat transfer means from the high temperature to the  
					low temperature fluid. Thermosyphons are essentially heat pipes but without the wicking structure which uses gravity  
					to transfer heat from a heat source that is located below the cold sink. As a result, the evaporator section is situated  
					below the condenser section. The working fluid evaporates, condenses in the condenser section and flows back to  
					the evaporator section under the influence of gravity.  
					HPHE is a very good choice when a corrosive exhaust contains particulates or suspensions that could settle onto the  
					heat exchange surface. HPHEs are particularly suited to ‘difficult’ applications, for example because the construction  
					of the HPHE allows the heat pipe surfaces to be cleaned easily and quickly with very little system down-time. Water  
					will be the working fluid of the proposed HPHE.  
					Dual Media Thermocline (DMT): A thermocline tank uses a single tank to store thermal energy. Thermocline has  
					the potential to reduce the cost of the thermal storage system and it can dispatch thermal energy at nearly a constant  
					3
					temperature over most of its discharge cycle . In a thermocline, isothermal hot and cold fluid regions become  
					separated by a narrow region of temperature gradient, which is called the thermocline or heat-exchange region. In a  
					dual-media thermocline (DMT) tank, a granulated material is added to the tank to reduce the amount of heat transfer  
					fluid (HTF) required to charge the system. In contrast, a single-medium thermocline (SMT) tank uses only HTF.  
					When the system is charged, cold fluid is drawn from the bottom, heated as it passes through a heat exchanger (heated  
					with the receiver heat transfer fluid) and returns to the top of the tank. When the tank is discharged, hot fluid is drawn  
					from the top and cooled as it passes through the end user heat sink (for example a heat exchanger to transfer heat for  
					steam generation) and returns to the bottom of the tank.  
					The proposed thermal energy storage is limited to 4 fluids  
					1
					2
					3
					4
					. Water,  
					. Therminol 66,  
					. HITEC salt,  
					. Solar Salt.  
					And the proposed thermal energy storage is limited to 3 solids  
					1
					2
					3
					. Quartzite,  
					. Basalt,  
					. Quartz sand.  
					Component level solution  
					Mandatory input (For the analysis of TES)  
					1
					2
					3
					4
					. The minimal temperature of operation, ℃  
					. The maximal temperature of operation, ℃  
					. Charging power, kW  
					. DMT charging time, hour  
					3
					Development of a molten-salt thermocline thermal storage system for parabolic trough plants- James E. Pacheco, Steven K. Showalter, William J. Kolb, Sandia  
					National Laboratories1, Solar Thermal Technology Department  
				Analysing the user data, the tool will provide storage solutions for different combination of HTF & storage material.  
					The key information that will be reported are given in the following table:  
					Item  
					Unit  
					m
					Quantity  
					Bed Diameter  
					Bed Height  
					m
					Tank height  
					m
					Tank weight  
					tons  
					tons  
					tons  
					tons  
					M€  
					€/kWh  
					Fluid weight  
					Stone weight  
					Sand weight  
					DMT cost (installed, filled)  
					DMT specific cost  
					Assumptions made under the submodule of “thermal Storage Analysis” (The corresponding values can be edited  
					through admin panel) are listed in the following table:  
					Variables (when HTF is Water)  
					The year under consideration for analysis  
					Cost of water  
					Unit  
					year  
					Default value  
					2017  
					3
					€/ton  
					€/ton  
					€/ton  
					€/ton  
					€/ton  
					€/ton  
					€/ton  
					number  
					m
					Cost of thermal oil  
					7000  
					654  
					1753  
					122  
					278  
					452  
					2
					Cost of Solar salt  
					Cost of hitec  
					Cost of Quartzite stones  
					Cost of Basalt stones  
					Cost of Sand  
					DMT height to diameter ratio  
					The maximum limit of DMT height  
					DMT height to diameter ratio  
					The maximum limit of DMT height  
					Safety margin for hot temperature  
					Factor to the fluid expansion  
					12  
					number  
					m
					2
					12  
					oC  
					20  
					number  
					3
				Factor to the fluid expansion  
					number  
					m
					3
					0.003  
					2
					Thickness margin for corrosion  
					Shape factor  
					number  
					number  
					m/s  
					Shape factor  
					2.5  
					2
					the nominal velocity of HTF in pipes  
					Number of flowmeters to measure the flowrate of HTF to DMT  
					Number of PT100 probes at the inlet and outlet of the DMT  
					Number of pressure sensors at the top and at the bottom of the DMT  
					Number of level sensor if the DMT contains a gas sky  
					Number of thermocouples along a vertical axis  
					Number of thermocouples along 2 radius  
					Number of pressostat (for pressure safety)  
					Number of thermostat (for temperature safety)  
					Unit cost of flowmeter  
					number  
					number  
					number  
					number  
					number  
					number  
					number  
					number  
					€/unit  
					2
					2
					2
					1
					10  
					10  
					1
					1
					5000  
					500  
					1500  
					1500  
					100  
					500  
					500  
					100  
					2
					Unit cost of PT100 probes  
					€/unit  
					Unit cost of pressure sensors  
					€/unit  
					Unit cost of level sensor  
					€/unit  
					Unit cost of thermocouples  
					€/unit  
					Unit cost of pressostat  
					€/unit  
					Unit cost of thermostat  
					€/unit  
					The connection cost  
					€/line  
					Number of analog card required  
					number  
					€/unit  
					Cost of analog card  
					500  
					700  
					7
					Cost per day per person for control software modification and final tests  
					€/day/person  
					number  
					Number of person-day required for control software modification & final  
					tests  
					Cost per km for fuel and toll  
					€/km  
					€/day  
					€/hour  
					km  
					0.485  
					165.98  
					22.43  
					500  
					The cost per day (for truck + structure costs)  
					The cost per hour (for driver)  
					The average distance of the transport of solid filler  
					Distance travelled by truck per day  
					km/day  
					500  
					Variables (when HTF is Thermal oil)  
					The year under consideration for analysis  
					Cost of water  
					Unit  
					year  
					Default value  
					2017  
					3
					€/ton  
					€/ton  
					€/ton  
					€/ton  
					€/ton  
					€/ton  
					€/ton  
					number  
					m
					Cost of thermal oil  
					7000  
					654  
					1753  
					122  
					278  
					452  
					2
					Cost of Solar salt  
					Cost of hitec  
					Cost of Quartzite stones  
					Cost of Basalt stones  
					Cost of Sand  
					DMT height to diameter ratio  
					The maximum limit of DMT height  
					DMT height to diameter ratio  
					The maximum limit of DMT height  
					Safety margin for hot temperature  
					Factor to the fluid expansion  
					Factor to the fluid expansion  
					Thickness margin for corrosion  
					12  
					number  
					m
					2
					12  
					oC  
					20  
					number  
					number  
					m
					3
					3
					0.003  
				Shape factor  
					number  
					m/s  
					2.5  
					2
					The nominal velocity of HTF in pipes  
					Number of flowmeters to measure the flowrate of HTF to DMT  
					Number of PT100 probes at the inlet and outlet of the DMT  
					Number of pressure sensors at the top and at the bottom of the DMT  
					Number of level sensor if the DMT contains a gas sky  
					Number of thermocouples along a vertical axis  
					Number of thermocouples along 2 radius  
					Number of pressostat (for pressure safety)  
					Number of thermostat (for temperature safety)  
					Unit cost of flowmeter  
					number  
					number  
					number  
					number  
					number  
					number  
					number  
					number  
					€/unit  
					2
					2
					2
					1
					10  
					10  
					1
					1
					5000  
					500  
					1500  
					1500  
					100  
					500  
					500  
					100  
					2
					Unit cost of PT100 probes  
					€/unit  
					Unit cost of pressure sensors  
					€/unit  
					Unit cost of level sensor  
					€/unit  
					Unit cost of thermocouples  
					€/unit  
					Unit cost of pressostat  
					€/unit  
					Unit cost of thermostat  
					€/unit  
					The connection cost  
					€/line  
					Number of analog card required  
					number  
					€/unit  
					Cost of analog card  
					500  
					700  
					7
					Cost per day per person for control software modification and final tests  
					€/day/person  
					Number of person-day required for control software modification and final tests number  
					Cost per km for fuel and toll  
					€/km  
					€/day  
					€/hour  
					km  
					0.485  
					165.98  
					22.43  
					500  
					500  
					1050  
					680  
					50  
					The cost per day (for truck + structure costs)  
					The cost per hour (for driver)  
					The average distance of the transport of solid filler  
					Distance travelled by truck per day  
					km/day  
					km  
					The average distance of the transport of HTF (except water)  
					The cost of a mobile lift crane (30 ton) on truck with driver  
					The cost of labour per hour  
					€/day  
					€/hour  
					Variables (when HTF is Hitec)  
					The year under consideration for analysis  
					Cost of water  
					Unit  
					year  
					Default value  
					2017  
					3
					€/ton  
					€/ton  
					€/ton  
					€/ton  
					€/ton  
					€/ton  
					€/ton  
					number  
					m
					Cost of thermal oil  
					7000  
					654  
					1753  
					122  
					278  
					452  
					2
					Cost of Solar salt  
					Cost of hitec  
					Cost of Quartzite stones  
					Cost of Basalt stones  
					Cost of Sand  
					DMT height to diameter ratio  
					The maximum limit of DMT height  
					DMT height to diameter ratio  
					The maximum limit of DMT height  
					Safety margin for hot temperature  
					Factor to the fluid expansion  
					Thickness margin for corrosion  
					Shape factor  
					12  
					number  
					m
					2
					12  
					oC  
					20  
					number  
					m
					3
					0.003  
					2.5  
					number  
				Shape factor  
					number  
					m/s  
					2.5  
					2
					the nominal velocity of HTF in pipes  
					Number of flowmeters to measure the flowrate of HTF to DMT  
					Number of PT100 probes at the inlet and outlet of the DMT  
					Number of pressure sensors at the top and at the bottom of the DMT  
					Number of level sensor if the DMT contains a gas sky  
					Number of thermocouples along a vertical axis  
					Number of thermocouples along 2 radius  
					Number of pressostat (for pressure safety)  
					Number of thermostat (for temperature safety)  
					Unit cost of flowmeter  
					number  
					number  
					number  
					number  
					number  
					number  
					number  
					number  
					€/unit  
					2
					2
					2
					1
					10  
					10  
					1
					1
					5000  
					500  
					1500  
					1500  
					100  
					500  
					500  
					100  
					2
					Unit cost of PT100 probes  
					€/unit  
					Unit cost of pressure sensors  
					€/unit  
					Unit cost of level sensor  
					€/unit  
					Unit cost of thermocouples  
					€/unit  
					Unit cost of pressostat  
					€/unit  
					Unit cost of thermostat  
					€/unit  
					The connection cost  
					€/line  
					Number of analog card required  
					number  
					€/unit  
					Cost of analog card  
					500  
					700  
					7
					Cost per day per person for control software modification and final tests  
					€/day/person  
					Number of person-day required for control software modification and final tests number  
					Cost per km for fuel and toll  
					€/km  
					€/day  
					€/hour  
					km  
					0.485  
					165.98  
					22.43  
					500  
					500  
					1050  
					680  
					50  
					The cost per day (for truck + structure costs)  
					The cost per hour (for driver)  
					The average distance of the transport of solid filler  
					Distance travelled by truck per day  
					The average distance of the transport of HTF (except water)  
					The cost of a mobile lift crane (30 ton) on truck with driver  
					The cost of labour per hour  
					km/day  
					km  
					€/day  
					€/hour  
					kW  
					Electric oven capacity  
					400  
					30,000  
					10000  
					3000  
					10000  
					Rental charge of oven for first week  
					Rental charge of oven for other week  
					Rental cost of diesel generator  
					€/week  
					€/week  
					€/week  
					€
					Cost of auxiliary components  
					Variables (when HTF is Molten salt)  
					The year under consideration for analysis  
					Cost of Quartzite stones  
					Unit  
					year  
					Default value  
					2017  
					122  
					278  
					452  
					2
					€/ton  
					€/ton  
					€/ton  
					Cost of Basalt stones  
					Cost of Sand  
					DMT height to diameter ratio  
					The maximum limit of DMT height  
					DMT height to diameter ratio  
					The maximum limit of DMT height  
					Safety margin for hot temperature  
					Unit cost of flowmeter  
					number  
					m
					12  
					number  
					2
					m
					oC  
					12  
					20  
					€/unit  
					€/unit  
					5000  
					500  
					Unit cost of PT100 probes  
				Unit cost of pressure sensors  
					Unit cost of level sensor  
					€/unit  
					€/unit  
					€/unit  
					€/unit  
					€/unit  
					€/unit  
					€
					1500  
					1500  
					100  
					Unit cost of thermocouples  
					Unit cost of pressostat  
					500  
					Unit cost of thermostat  
					500  
					Cost of analog card  
					500  
					Total cost of analog card  
					1000  
					4900  
					680  
					Total cost for control software modification and final tests  
					The cost of a mobile lift crane (30 ton) on truck with driver  
					The cost of labour per hour  
					€
					€/day  
					€/hour  
					kW  
					50  
					Electric oven capacity  
					400  
					Rental charge of oven for first week  
					Rental charge of oven for other week  
					Rental cost of diesel generator  
					Cost of auxiliary components  
					€/week  
					€/week  
					€/week  
					€
					30,000  
					10000  
					3000  
					10000  
					Mandatory input (For the analysis of HPHE)  
					1
					2
					3
					. HPHE capacity, kW  
					. Cold side inlet temperature, C  
					. Cold side exit temperature, C  
					o
					o
					Analysing the user data, the tool will provide details of HPHE solutions. The key information that will be reported  
					are given in the following table:  
					Item  
					Unit  
					kg  
					Amount used  
					Unit cost, € Cost, €  
					Carbon steel  
					3
					04 stainless steel  
					kg  
					Distilled water  
					kg  
					Aluminium paint  
					litre  
					Direct material cost  
					Manufacture, assemble pipes  
					Direct labour  
					number  
					labour-day  
					kwh  
					Electrical energy  
					Transportation of material to HPHE manufacturing plant tkm  
					Transportation of HPHE to site  
					Direct transportation cost  
					Total variable cost, €/unit  
					Manufacturing overhead over variable cost  
					Profit margin over variable cost  
					Total cost of HPHE, €  
					tkm  
					Specific cost of HPHE, €/kw  
					Dimension  
					Length  
					meter  
				Width  
					meter  
					meter  
					m3  
					Height  
					Volume  
					Assumptions made under the submodule of “HPHE Analysis” (The corresponding values can be edited through  
					admin panel) are listed in the following table:  
					Variables  
					Unit  
					Default value  
					20  
					o
					Safety margin for acid dew point temperature, C  
					C
					Length of each pipe, meter  
					meter  
					meter  
					meter  
					%
					1.57  
					0.04  
					0.002  
					5%  
					Diameter of HPHE pipe, meter  
					HPHE pipe wall thickness, meter  
					Adiabatic section, %  
					Maximum capacity of HPHE, kw  
					Minimum capacity of HPHE, kw  
					HPHE working fluid filling rate, %  
					kw  
					800  
					50  
					kw  
					%
					60%  
					10  
					o
					Minimum temperature difference for heat transfer to cold stream, C  
					Minimum clearance from side wall to pipe, meter  
					Longitudinal pitch factor with respect to pipe diameter, number  
					Transverse pitch factor with respect to pipe diameter, number  
					Thickness of side plates of HPHE, meter  
					Thickness of separator plate of HPHE, meter  
					Mass multiplication factor for HPHE, number  
					Cost of carbon steel, €/kg  
					C
					meter  
					number  
					number  
					meter  
					meter  
					number  
					€/kg  
					0.02  
					1.8  
					1.8  
					0.005  
					0.005  
					1.30  
					0.8  
					Cost of SS304, €/kg  
					€/kg  
					2.9  
					Cost of manufacturing each heat pipe, €/piece  
					Cost of distilled water, €/kg  
					€/piece  
					€/kg  
					10  
					1.6  
					Direct labour- HPHE capacity curve slope, number  
					Labour rate, €/ Labour-day  
					number  
					€/ Labour-day  
					number  
					€/kwh  
					micron  
					%
					0.08  
					140  
					2.75  
					0.03  
					25  
					Electricity consumption factor with respect to HPHE capacity, number  
					Electrical energy price, €/kwh  
					Paint thickness for HPHE side plates, micron  
					paint efficiency, %  
					80%  
					35  
					Cost of paint, €/litre  
					€/litre  
					€/tkm  
					km  
					Transportation cost rate for material supply to HPHE plant, €/tkm  
					Average transport distance for HPHE material supply, km  
					Transportation cost rate to deliver HPHE to site, €/tkm  
					Average transport distance of HPHE to site, km  
					1.8  
					200  
					3.2  
					€/tkm  
					km  
					500  
					0.1  
					Manufacturing overhead factor with respect to variable cost for HPHE, number number  
					Profit factor over variable cost of HPHE, number number  
					0.3  
					For both stand alone and cascaded solution the maximum and minimum capacity of HPHE are considered to be 800  
					kW and 50 kW respectively. The maximum capacity of TES is around 6.4 MWh.  
					If the waste heat flow rate is greater than 800 kW, then two HPHEs can be used in parallel to recover waste heat from  
					the flue gas exiting the furnace. If there are sufficient waste heat left after the first stage of heat recovery, then a  
					secondary stage of heat recovery application can be deployed. As the source of waste heat is of intermittent in nature,  
					each of the stages will have a combination of HPHE and TES, hence, two loops will be formed- one is primary loop  
					and the other is secondary loop where the primary loop will be operated at relatively higher temperature (i.e., T_hot  
					&
					T_cold).  
				Figure: Schematic diagram of cascaded solution  
					o
					o
					For a situation, 350 C<= Flue gas temperature =< 700 C, there will be total 32 number of possible solutions.  
					o
					o
					For a situation, 200 C<= Flue gas temperature < 350 C, there will be total 12 number of possible solutions  
					Summary of the cascaded solutions are outlined in the following table:  
					Primary loop  
					Secondary loop  
					SL  
					No. Solution HPHE 1 HPHE 2 DMT  
					T_hot T_cold  
					DMT  
					T_hot T_cold  
					1
					2
					3
					4
					5
					6
					7
					8
					9
					111a  
					111b  
					111c  
					111d  
					112a  
					112b  
					112c  
					112d  
					121a  
					HPHE 1 HPHE 2 Hitec + Quartzite  
					300  
					300  
					300  
					300  
					300  
					300  
					300  
					300  
					300  
					300  
					170 HPHE 3 Thermal oil + Quartzite  
					170 HPHE 3 Thermal oil + Quartzite  
					150  
					150  
					80  
					80  
					80  
					80  
					40  
					40  
					40  
					40  
					80  
					80  
					80  
					80  
					40  
					40  
					40  
					40  
					80  
					80  
					80  
					80  
					40  
					40  
					40  
					40  
					HPHE 1 HPHE 2 Hitec + Quartzite + Sand  
					HPHE 1 HPHE 2 Hitec + Quartzite  
					170 HPHE 3 Thermal oil + Quartzite + Sand 150  
					170 HPHE 3 Thermal oil + Quartzite + Sand 150  
					HPHE 1 HPHE 2 Hitec + Quartzite + Sand  
					HPHE 1 HPHE 2 Hitec + Quartzite  
					170 HPHE 3 Water (SMT)  
					90  
					90  
					HPHE 1 HPHE 2 Hitec + Quartzite  
					170 HPHE 3 Water + Quartzite  
					170 HPHE 3 Water (SMT)  
					HPHE 1 HPHE 2 Hitec + Quartzite + Sand  
					HPHE 1 HPHE 2 Hitec + Quartzite + Sand  
					HPHE 1 HPHE 2 Thermal oil + Quartzite  
					HPHE 1 HPHE 2 Thermal oil + Quartzite  
					90  
					170 HPHE 3 Water + Quartzite  
					170 HPHE 3 Thermal oil + Quartzite  
					90  
					150  
					1
					1
					1
					1
					1
					1
					1
					1
					1
					1
					2
					2
					2
					2
					2
					0 121b  
					1 121c  
					2 121d  
					3 122a  
					4 122b  
					5 122c  
					6 122d  
					7 131a  
					8 131b  
					9 131c  
					0 131d  
					1 132a  
					2 132b  
					3 132c  
					4 132d  
					170 HPHE 3 Thermal oil + Quartzite + Sand 150  
					170 HPHE 3 Thermal oil + Quartzite 150  
					170 HPHE 3 Thermal oil + Quartzite + Sand 150  
					HPHE 1 HPHE 2 Thermal oil + Quartzite + Sand 300  
					HPHE 1 HPHE 2 Thermal oil + Quartzite + Sand 300  
					HPHE 1 HPHE 2 Thermal oil + Quartzite  
					HPHE 1 HPHE 2 Thermal oil + Quartzite  
					300  
					300  
					170 HPHE 3 Water (SMT)  
					90  
					90  
					170 HPHE 3 Water + Quartzite  
					170 HPHE 3 Water (SMT)  
					HPHE 1 HPHE 2 Thermal oil + Quartzite + Sand 300  
					HPHE 1 HPHE 2 Thermal oil + Quartzite + Sand 300  
					90  
					170 HPHE 3 Water + Quartzite  
					170 HPHE 2 Thermal oil + Quartzite  
					170 HPHE 2 Thermal oil + Quartzite  
					90  
					HPHE 1  
					HPHE 1  
					HPHE 1  
					HPHE 1  
					HPHE 1  
					HPHE 1  
					HPHE 1  
					HPHE 1  
					Hitec + Quartzite  
					300  
					300  
					300  
					300  
					300  
					300  
					300  
					300  
					150  
					150  
					Hitec + Quartzite + Sand  
					Hitec + Quartzite  
					170 HPHE 2 Thermal oil + Quartzite + Sand 150  
					170 HPHE 2 Thermal oil + Quartzite + Sand 150  
					Hitec + Quartzite + Sand  
					Hitec + Quartzite  
					170 HPHE 2 Water (SMT)  
					170 HPHE 2 Water + Quartzite  
					170 HPHE 2 Water (SMT)  
					170 HPHE 2 Water + Quartzite  
					90  
					90  
					90  
					90  
					Hitec + Quartzite  
					Hitec + Quartzite + Sand  
					Hitec + Quartzite + Sand  
				2
					2
					2
					2
					2
					3
					3
					3
					3
					3
					3
					3
					3
					3
					3
					4
					4
					4
					4
					4
					5 133a  
					6 133a  
					7 133a  
					8 133a  
					9 134a  
					0 134b  
					1 134c  
					2 134d  
					3 211a  
					4 211b  
					5 211c  
					6 211d  
					7 221a  
					8 221b  
					9 221c  
					0 221d  
					1 23a  
					HPHE 1  
					HPHE 1  
					HPHE 1  
					HPHE 1  
					HPHE 1  
					HPHE 1  
					HPHE 1  
					HPHE 1  
					Thermal oil + Quartzite  
					Thermal oil + Quartzite  
					300  
					300  
					170 HPHE 2 Thermal oil + Quartzite  
					170 HPHE 2 Thermal oil + Quartzite + Sand 150  
					170 HPHE 2 Thermal oil + Quartzite 150  
					170 HPHE 2 Thermal oil + Quartzite + Sand 150  
					150  
					80  
					80  
					80  
					80  
					40  
					40  
					40  
					40  
					30  
					30  
					30  
					30  
					30  
					30  
					30  
					30  
					Thermal oil + Quartzite + Sand 300  
					Thermal oil + Quartzite + Sand 300  
					Thermal oil + Quartzite  
					Thermal oil + Quartzite  
					300  
					300  
					170 HPHE 2 Water (SMT)  
					170 HPHE 2 Water + Quartzite  
					170 HPHE 2 Water (SMT)  
					170 HPHE 2 Water + Quartzite  
					80 HPHE 3 Water (SMT)  
					80 HPHE 3 Water (SMT)  
					80 HPHE 3 Water + Quartzite  
					80 HPHE 3 Water + Quartzite  
					80 HPHE 2 Water (SMT)  
					80 HPHE 2 Water (SMT)  
					80 HPHE 2 Water + Quartzite  
					80 HPHE 2 Water + Quartzite  
					40  
					90  
					90  
					90  
					90  
					80  
					80  
					80  
					80  
					80  
					80  
					80  
					80  
					Thermal oil + Quartzite + Sand 300  
					Thermal oil + Quartzite + Sand 300  
					HPHE 1 HPHE 2 Thermal oil + Quartzite  
					HPHE 1 HPHE 2 Thermal oil + Quartzite + Sand 150  
					HPHE 1 HPHE 2 Thermal oil + Quartzite 150  
					HPHE 1 HPHE 2 Thermal oil + Quartzite + Sand 150  
					150  
					HPHE 1  
					HPHE 1  
					HPHE 1  
					HPHE 1  
					Thermal oil + Quartzite 150  
					Thermal oil + Quartzite + Sand 150  
					Thermal oil + Quartzite 150  
					Thermal oil + Quartzite + Sand 150  
					HPHE 1 HPHE 2 Water (SMT)  
					90  
					90  
					90  
					90  
					2 23b  
					HPHE 1 HPHE 2 Water + Quartzite  
					40  
					3 24a  
					HPHE 1  
					HPHE 1  
					Water (SMT)  
					40  
					4 24b  
					Water + Quartzite  
					40  
					According to specific cost of WHR solution, the solutions will be ranked for a specific scenario of waste heat quality  
					and quantity.  
					2
					.4. Module 4- Financial performance  
					For each of the WHR solution identified by module 3, the tool will provide informed investment decision support on  
					the marginal investment (on WHR technology) through evaluating following financial parameters:  
					1
					2
					3
					4
					5
					t
					. Levelised cost of thermal energy (LCOE ),  
					. Payback period,  
					. Net present value (NPV),  
					. Internal rate of return (IRR),  
					. Return on investment (ROI) etc.  
					To account the uncertainty of different variables such as retrofitting factor, discount rate etc., the tool will perform  
					sensitivity analysis to determine the impact of these factors on LCOE , payback period, NPV, IRR, ROI;  
					t
					Assumptions made under the module 4 (The corresponding values can be edited through admin panel) are listed in  
					the following table:  
					Variables  
					Unit  
					Default value  
					Plant downtime  
					%
					10%  
					24  
					Daily operation hours  
					Discount rate  
					hour/day  
					%
					5%  
					20  
					Service life  
					Year  
					Retrofitting factor  
					number  
					€/kWh  
					%
					1
					Natural gas price  
					0.0313  
					10%  
					4
					Installation & commission cost with respect to capex  
					Number of times of HTF preheating operation per year  
					Cost of electricity  
					number  
					€/kWh  
					€/hour  
					0.07  
					50  
					The cost of labour per hour  
				2
					.5. Module 5- Environmental performance  
					For each of the WHR solution identified by module 3, the tool will provide the information regarding the resource  
					and energy consumed during the respective manufacturing and use phases. The key information regarding resource  
					consumption that will be available is illustrated in the following table  
					Amount  
					Resources  
					For HPHE  
					Carbon steel, kg  
					3
					04 stainless steel, kg  
					Distilled water, kg  
					Aluminium paint, litre  
					For TES  
					Carbon steel, kg  
					3
					04 stainless steel, kg  
					HTF, kg  
					Quartzite, kg  
					Sand, kg  
					For piping & instrumentation  
					Carbon steel, kg  
					3
					04 stainless steel, kg  
					HTF, kg  
					Finally, for each of the WHR solution identified by module 3, the tool will provide the potential emission saving  
					opportunities created by the application of the respective WHR solution.