1
. Introduction  
Waste heat is defined as the residual heat after heat recovery within a process, heat recovery between several  
processing units on a site, and residual heat rejected to cooling water and air from a site utility system. According to  
IPCC (2010 data) Industry is responsible for 32% of worldwide greenhouse gas emissions, i.e. about 16 billion tonnes  
of CO2 equivalent, including indirect emissions due to electricity used in industrial plants. According to the  
International Energy Agency, energy/ waste heat recovery together with recycling is expected to bring 9% of the  
necessary emissions reduction. Waste heat recovery (WHR) can significantly improve the site energy efficiency  
which has been identified as the most cost-effective measure for carbon dioxide mitigation especially in the short and  
medium term.  
1
.1 Opportunities to achieve a more competitive, secure and sustainable energy system and to meet its long-  
term 2050 greenhouse gas reductions target  
a 40% cut in greenhouse gas emissions compared to 1990 levels;  
at least a 32% share of renewable energy consumption, with an upward revisions clause for 2023;  
indicative target for an improvement in energy efficiency at EU level of at least 32.5%, following on from  
the existing 20% target for 2020.  
In this context, efficient recovery of waste heat in the form of power, heat and chilling can contribute in three ways:  
(
(
i)  
ii)  
supplying power and heat in the respective grid;  
balancing the grid (both power and thermal) against the fluctuation caused by increased share of variable  
renewables in the energy mix;  
(
iii)  
increasing energy efficiency and hence the energy security of waste heat generating site through saving  
of primary energy.  
1
.2 Barriers of WHR adoption  
Although there are huge potential and numerous benefits of WHR, there are some barriers that impact the economy  
and effectiveness of heat recovery equipment and impede its wider installation.  
Barrier 1: Lack of justification: The lack of accurate evaluation of cost benefit of the WHR project does not build  
confidence.  
Barrier 2: Long payback period: Costs of heat recovery equipment, auxiliary systems, and design services lead to  
long payback periods in certain applications.  
Barrier 3: Composition of exhaust stream: Many exhaust streams are contaminated or containing fouling  
particulates of some form. Resulting issues can be clogging and abrasion of devices, and corrosion or deposit  
formation when temperatures are reduced below dew points of certain components when heat is extracted from a  
stream. These aspects can limit the possibility to recover heat from some sources, or significantly increase the  
associated costs.  
Barrier 4: Economy of Scale: Equipment costs favour large-scale heat recovery systems and create challenges for  
small-scale operations.  
Barrier 5: Intermittent Character of waste heat source: This might cause fatigue in the heat exchange materials  
due to thermal cycling. Moreover, the intermittent character of the recoverable energy flows and its variations during  
normal operating conditions might not ensure energy efficient performance.  
Barrier 6: Lack of awareness and initiatives: Industrial engineers often do not have the time or knowledge to  
explore all waste heat recovery methods and are “unsure” or “uninformed” of the benefits of WHR. Novel methods  
of WHR are often ignored due to lack of understanding.  
Barrier 7: Lack of space: In some cases, spaces for installing WHR devices are very limited. This becomes more  
complicated when additional energy storage needs to be installed while recovering waste heat from intermittent  
sources.  
Barrier 8: Expensive consultancy service: Expensive consultancy is required from start of potential WHR projects.  
It demotivates WHR initiatives.  
1
.3 Features of the tool  
This tool is designed addressing the above stated barriers of WHR adoption. The main features of the tool are:  
It will characterise waste heat stream i.e., the exhaust flue gas processing minimum numbers of user inputs;  
It will provide dimensions of WHR devices such as heat pipe heat exchanger (HPHE) and thermal storages  
for a specific WHR application;  
It will provide stand alone solution where user will select the capacity of HPHE and the tool will give  
different options for thermal energy storage;  
It will provide multiple options of WHR solution depending on the flue gas temperature and the amount of  
heat to be recovered;  
It will provide informed investment decision support on the marginal investment (on WHR technology)  
through evaluating (for each of the options for WHR solution) different financial parameters such as payback  
period, net present value (NPV), internal rate of return (IRR), return on investment (ROI) etc.;  
To account the uncertainty of different variables such as retrofitting factor, discount rate etc., it will perform  
sensitivity analysis to determine the impact of these factors on payback period, NPV, IRR, ROI;  
It will evaluate environmental performance for each of the options for WHR solution;  
2
. Functional modules of the tool  
There are five modules which are:  
1
2
3
4
5
. Flue Gas Characterization  
. Waste heat utilisation  
. WHR solution  
. Cost performance  
. Environmental performance  
User will provide data related to waste heat source through module 1 i.e., “flue Gas Characterization” module. Results  
of module 1 and user data will be processed and fed to other modules to formulate different waste heat recovery  
solutions along with the respective cost and environmental performances.  
2
.1 Module 1- Flue Gas Characterization  
Processing the user data, this module will predict the quality and quantity of the available waste heat and properties  
of flue gas exiting the furnace. Using the temperature, flow measurement and the stream composition data, waste  
heat stream will be characterised in terms of quantity and quality. For instance, if a waste heat stream contains ‘n’  
th  
1
number components, then the heat content in the I component can be expressed as:  
1
Waste Heat Recovery: Technology and Opportunities in U.S. Industry; Prepared by BCS, Incorporated March 2008  
th  
i
Where h (t) is the enthalpy of the I species at the specified temperature T, r is the reference temperature (either  
ambient temperature or the minimum allowed temperature of WHR), and Cp,I is the specific heat capacity of the  
2
species as a function of temperature. Cp can be expressed as:  
p
Where, T in Kelvin, C in kJ/kmol, K  
After adding the enthalpies of all the constituents, the heat content of the waste stream will be determined. To  
calculate the heat content of the flue gas, all the constituent gases (such as N  
considered as ideal gas.  
2
, H  
2
, CO  
2
, CO, SO  
2
, H  
2
O
(g) etc.) will be  
Quantity  
The key information of the results is outlined in the following table:  
Item  
Unit  
Average density of flue gas (ambient to flue gas temperature)  
Average density of flue gas (max allow temp of flue gas)  
kg/m3  
kg/m3  
kW  
Waste heat energy flow rate through the flue gas (w.r.t. ambient temperature)  
Actual recoverable waste heat energy flow rate (w.r.t. maximum allowable temperature*) kW  
Average specific heat capacity of flue gas (ambient to flue gas temperature)  
Average specific heat capacity of flue gas (ambient to flue gas temperature)  
kJ/kg.C  
3
kJ/m .C  
kJ/kg.C  
Average specific heat capacity of flue gas (maximum allowable temperature* of the flue  
gas to flue gas temperature)  
Average specific heat capacity of flue gas (maximum allowable temperature* of the flue  
gas to flue gas temperature)  
3
kJ/m .C  
*
Maximum allowable temperature of the flue gas = Acid dew point temperature + safety margin  
The tool will offer three options to characterise flue gas. Based on the available information, user can select any of  
the three options.  
Option 1 (Flue Gas Characterization)  
2
Source: B.G. Kyle, 1984, Chemical and Process Thermodynamics  
Mandatory input (option 1)  
3
1
2
3
4
5
6
. Natural gas (Fuel) flow rate, m /s  
. O concentration in exhaust, %  
. Flue gas temperature, C  
. Furnace operating cycle  
. Furnace ON time  
2
o
. Furnace OFF time  
Optional input (option 1)  
1
2
3
4
. Natural gas composition  
o
. Acid dew point temperature, C  
o
. Ambient temperature, C  
3
. Sp. Heat capacity of flue gas, kJ/m .C  
Information flow diagram within option 1:  
The logic and algorithm developed under the assumption of complete combustion. Other assumptions made under  
option 1 of flue Gas Characterization (The corresponding values can be edited through admin panel) are listed in  
the following table  
Item  
Unit Quantity Comments  
o
o
Acid dew point temperature, C  
Ambient temperature, C  
Safety margin for acid dew point temperature, C  
Pressure of the gaseous substance  
C
C
C
150 If corresponding user input is null  
20 If corresponding user input is null  
20 Internal design variable  
o
o
o
o
atm  
1 Internal design variable  
Option 2 (Flue Gas Characterization)  
Mandatory input (option 2)  
3
1
2
3
4
. Flue gas flow rate, m /s or kg/s  
o
. Flue gas temperature, C  
. Furnace operating cycle  
. Flue gas composition, %vol or %mass  
(
The default list of flue gas constituents)  
Flue gas constituents  
%Vol or %mass  
N2  
O2  
CO  
CO2  
H2O  
NO  
N2O  
NO2  
SO2  
SO3  
C6H6  
HCl  
5
6
. Furnace ON time  
. Furnace OFF time  
Optional input (option 2)  
o
. Acid dew point temperature, C  
o
1
2
. Ambient temperature, C  
Information flow diagram within option 2:  
Assumptions made under option 2 of flue Gas Characterization (The corresponding values can be edited through  
admin panel) are listed in the following table:  
Item  
Unit Quantity Comments  
o
o
Acid dew point temperature, C  
Ambient temperature, C  
Safety margin for acid dew point temperature, C  
Pressure of the gaseous substance  
C
C
C
150 If corresponding user input is null  
20 If corresponding user input is null  
20 Internal design variable  
o
o
o
o
atm  
1 Internal design variable  
Option 3 (Flue Gas Characterization)  
2
.2. Module 2- Waste heat utilisation  
andatory input (option 3)  
3
1
2
3
. Natural gas (Fuel) flow rate, m /s  
. Excess air, %  
o
. Flue gas temperature, C  
Optional input (option 3)  
1
. Natural gas composition  
Component (%Volume)  
CH  
4
C
2
C
3
C
4
H
H
H
6
8
10  
CO  
H
2
CO  
2
N
2
O
2
H
2
H
2
S
O
o
2
3
. Acid dew point temperature, C  
. Ambient temperature, C  
o
Information flow diagram within option 3:  
The logic and algorithm developed under the assumption of complete combustion. Other assumptions made under  
option 3 of flue Gas Characterization (The corresponding values can be edited through admin panel) are listed in  
the following table  
Item  
Natural gas composition  
Unit  
Quantity Comments  
96%  
CH  
4
% vol  
% vol  
If corresponding user input is null  
C
2
H
6
4%  
o
o
Acid dew point temperature, C  
C
C
C
150 If corresponding user input is null  
20 If corresponding user input is null  
20 Internal design variable  
o
o
Ambient temperature, C  
o
o
Safety margin for acid dew point temperature, C  
Pressure of the gaseous substance  
atm  
1 Internal design variable  
Module 2- Waste heat utilisation  
(
This module will be developed in future)  
To utilise the recovered waste, this module will incorporate six WHR technology options:  
1
2
. Direct heat exchange via heat exchanger;  
. Upgrading low grade heat through heat pump technologies  
a. mechanical heat pump (MHP);  
b. absorption heat pump (AHP);  
c. absorption heat transformer (AHT);  
3
4
. Absorption chiller (AbC) to produced chilled water;  
. Rankine cycle (Organic Rankine cycle, ORC & steam Rankine cycle) to produce power.  
This module will consider both onsite and offsite end use of recovered energy:  
For onsite end use of recovered heat produced, whether directly via heat exchange or from heat upgrade  
technologies, will be considered to be used for boiler feed water preheating, air preheating, space heating (within  
the site), steam generation and hot utility reduction;  
For onsite end use of recovered energy in the form of chilling will be considered to be used:  
to replace electrically driven vapour compression chillers (used for process and space cooling in the site) to  
save electrical power; and  
to provide chilling to improve the power generation efficiency of a gas turbine, by reducing the compressor  
inlet air temperature;  
For onsite end use of recovered energy in the form of power will be considered to be used within the site to  
reduce power import.  
For offsite end use of recovered energy in the form heat, chilling and power will be considered to be exported to the  
energy grid (such as power grid, central DHC network), neighbouring industries & local district heating and cooling  
(
DHC) network, large private facilities such as shopping centre, sport centre, hospital, university etc.  
2
.3. Module 3- WHR solution  
In this module there are different submodules which includes:  
Standalone solution  
Cascaded solution  
Component level solution  
Heat Pipe Heat Exchanger (HPHE)  
Thermal energy storage (TES)  
Under the option of Standalone solution”, user will select the capacity of HPHE, i.e., the amount of waste heat to  
be recovered from the flue gas exiting the furnace. The tool will provide different options of TES along with overall  
cost of the solution and dimensions of the core components of the solution.  
Under the option of “Cascaded solution”, analysing the results of the flue gas characterisation module, tool will offer  
multiple options of solution along with the overall cost of the solution, dimensions and cost of the core components  
of the solution.  
Under the option of “Component level solution”, the tool will provide cost and dimensions of the core components  
of the solution.  
The main components of WHR solution are  
Heat Pipe Heat Exchanger (HPHE)  
Dual Media Thermocline (DMT)  
A HPHE is a liquid coupled indirect heat transfer type heat exchanger and employs a number of individually-sealed  
or groups of sealed heat pipes or thermosyphons as the major heat transfer means from the high temperature to the  
low temperature fluid. Thermosyphons are essentially heat pipes but without the wicking structure which uses gravity  
to transfer heat from a heat source that is located below the cold sink. As a result, the evaporator section is situated  
below the condenser section. The working fluid evaporates, condenses in the condenser section and flows back to  
the evaporator section under the influence of gravity.  
HPHE is a very good choice when a corrosive exhaust contains particulates or suspensions that could settle onto the  
heat exchange surface. HPHEs are particularly suited to ‘difficult’ applications, for example because the construction  
of the HPHE allows the heat pipe surfaces to be cleaned easily and quickly with very little system down-time. Water  
will be the working fluid of the proposed HPHE.  
Dual Media Thermocline (DMT): A thermocline tank uses a single tank to store thermal energy. Thermocline has  
the potential to reduce the cost of the thermal storage system and it can dispatch thermal energy at nearly a constant  
3
temperature over most of its discharge cycle . In a thermocline, isothermal hot and cold fluid regions become  
separated by a narrow region of temperature gradient, which is called the thermocline or heat-exchange region. In a  
dual-media thermocline (DMT) tank, a granulated material is added to the tank to reduce the amount of heat transfer  
fluid (HTF) required to charge the system. In contrast, a single-medium thermocline (SMT) tank uses only HTF.  
When the system is charged, cold fluid is drawn from the bottom, heated as it passes through a heat exchanger (heated  
with the receiver heat transfer fluid) and returns to the top of the tank. When the tank is discharged, hot fluid is drawn  
from the top and cooled as it passes through the end user heat sink (for example a heat exchanger to transfer heat for  
steam generation) and returns to the bottom of the tank.  
The proposed thermal energy storage is limited to 4 fluids  
1
2
3
4
. Water,  
. Therminol 66,  
. HITEC salt,  
. Solar Salt.  
And the proposed thermal energy storage is limited to 3 solids  
1
2
3
. Quartzite,  
. Basalt,  
. Quartz sand.  
Component level solution  
Mandatory input (For the analysis of TES)  
1
2
3
4
. The minimal temperature of operation, ℃  
. The maximal temperature of operation, ℃  
. Charging power, kW  
. DMT charging time, hour  
3
Development of a molten-salt thermocline thermal storage system for parabolic trough plants- James E. Pacheco, Steven K. Showalter, William J. Kolb, Sandia  
National Laboratories1, Solar Thermal Technology Department  
Analysing the user data, the tool will provide storage solutions for different combination of HTF & storage material.  
The key information that will be reported are given in the following table:  
Item  
Unit  
m
Quantity  
Bed Diameter  
Bed Height  
m
Tank height  
m
Tank weight  
tons  
tons  
tons  
tons  
M€  
€/kWh  
Fluid weight  
Stone weight  
Sand weight  
DMT cost (installed, filled)  
DMT specific cost  
Assumptions made under the submodule of “thermal Storage Analysis(The corresponding values can be edited  
through admin panel) are listed in the following table:  
Variables (when HTF is Water)  
The year under consideration for analysis  
Cost of water  
Unit  
year  
Default value  
2017  
3
€/ton  
€/ton  
€/ton  
€/ton  
€/ton  
€/ton  
€/ton  
number  
m
Cost of thermal oil  
7000  
654  
1753  
122  
278  
452  
2
Cost of Solar salt  
Cost of hitec  
Cost of Quartzite stones  
Cost of Basalt stones  
Cost of Sand  
DMT height to diameter ratio  
The maximum limit of DMT height  
DMT height to diameter ratio  
The maximum limit of DMT height  
Safety margin for hot temperature  
Factor to the fluid expansion  
12  
number  
m
2
12  
oC  
20  
number  
3
Factor to the fluid expansion  
number  
m
3
0.003  
2
Thickness margin for corrosion  
Shape factor  
number  
number  
m/s  
Shape factor  
2.5  
2
the nominal velocity of HTF in pipes  
Number of flowmeters to measure the flowrate of HTF to DMT  
Number of PT100 probes at the inlet and outlet of the DMT  
Number of pressure sensors at the top and at the bottom of the DMT  
Number of level sensor if the DMT contains a gas sky  
Number of thermocouples along a vertical axis  
Number of thermocouples along 2 radius  
Number of pressostat (for pressure safety)  
Number of thermostat (for temperature safety)  
Unit cost of flowmeter  
number  
number  
number  
number  
number  
number  
number  
number  
€/unit  
2
2
2
1
10  
10  
1
1
5000  
500  
1500  
1500  
100  
500  
500  
100  
2
Unit cost of PT100 probes  
€/unit  
Unit cost of pressure sensors  
€/unit  
Unit cost of level sensor  
€/unit  
Unit cost of thermocouples  
€/unit  
Unit cost of pressostat  
€/unit  
Unit cost of thermostat  
€/unit  
The connection cost  
€/line  
Number of analog card required  
number  
€/unit  
Cost of analog card  
500  
700  
7
Cost per day per person for control software modification and final tests  
€/day/person  
number  
Number of person-day required for control software modification & final  
tests  
Cost per km for fuel and toll  
€/km  
€/day  
€/hour  
km  
0.485  
165.98  
22.43  
500  
The cost per day (for truck + structure costs)  
The cost per hour (for driver)  
The average distance of the transport of solid filler  
Distance travelled by truck per day  
km/day  
500  
Variables (when HTF is Thermal oil)  
The year under consideration for analysis  
Cost of water  
Unit  
year  
Default value  
2017  
3
€/ton  
€/ton  
€/ton  
€/ton  
€/ton  
€/ton  
€/ton  
number  
m
Cost of thermal oil  
7000  
654  
1753  
122  
278  
452  
2
Cost of Solar salt  
Cost of hitec  
Cost of Quartzite stones  
Cost of Basalt stones  
Cost of Sand  
DMT height to diameter ratio  
The maximum limit of DMT height  
DMT height to diameter ratio  
The maximum limit of DMT height  
Safety margin for hot temperature  
Factor to the fluid expansion  
Factor to the fluid expansion  
Thickness margin for corrosion  
12  
number  
m
2
12  
oC  
20  
number  
number  
m
3
3
0.003  
Shape factor  
number  
m/s  
2.5  
2
The nominal velocity of HTF in pipes  
Number of flowmeters to measure the flowrate of HTF to DMT  
Number of PT100 probes at the inlet and outlet of the DMT  
Number of pressure sensors at the top and at the bottom of the DMT  
Number of level sensor if the DMT contains a gas sky  
Number of thermocouples along a vertical axis  
Number of thermocouples along 2 radius  
Number of pressostat (for pressure safety)  
Number of thermostat (for temperature safety)  
Unit cost of flowmeter  
number  
number  
number  
number  
number  
number  
number  
number  
€/unit  
2
2
2
1
10  
10  
1
1
5000  
500  
1500  
1500  
100  
500  
500  
100  
2
Unit cost of PT100 probes  
€/unit  
Unit cost of pressure sensors  
€/unit  
Unit cost of level sensor  
€/unit  
Unit cost of thermocouples  
€/unit  
Unit cost of pressostat  
€/unit  
Unit cost of thermostat  
€/unit  
The connection cost  
€/line  
Number of analog card required  
number  
€/unit  
Cost of analog card  
500  
700  
7
Cost per day per person for control software modification and final tests  
€/day/person  
Number of person-day required for control software modification and final tests number  
Cost per km for fuel and toll  
€/km  
€/day  
€/hour  
km  
0.485  
165.98  
22.43  
500  
500  
1050  
680  
50  
The cost per day (for truck + structure costs)  
The cost per hour (for driver)  
The average distance of the transport of solid filler  
Distance travelled by truck per day  
km/day  
km  
The average distance of the transport of HTF (except water)  
The cost of a mobile lift crane (30 ton) on truck with driver  
The cost of labour per hour  
€/day  
€/hour  
Variables (when HTF is Hitec)  
The year under consideration for analysis  
Cost of water  
Unit  
year  
Default value  
2017  
3
€/ton  
€/ton  
€/ton  
€/ton  
€/ton  
€/ton  
€/ton  
number  
m
Cost of thermal oil  
7000  
654  
1753  
122  
278  
452  
2
Cost of Solar salt  
Cost of hitec  
Cost of Quartzite stones  
Cost of Basalt stones  
Cost of Sand  
DMT height to diameter ratio  
The maximum limit of DMT height  
DMT height to diameter ratio  
The maximum limit of DMT height  
Safety margin for hot temperature  
Factor to the fluid expansion  
Thickness margin for corrosion  
Shape factor  
12  
number  
m
2
12  
oC  
20  
number  
m
3
0.003  
2.5  
number  
Shape factor  
number  
m/s  
2.5  
2
the nominal velocity of HTF in pipes  
Number of flowmeters to measure the flowrate of HTF to DMT  
Number of PT100 probes at the inlet and outlet of the DMT  
Number of pressure sensors at the top and at the bottom of the DMT  
Number of level sensor if the DMT contains a gas sky  
Number of thermocouples along a vertical axis  
Number of thermocouples along 2 radius  
Number of pressostat (for pressure safety)  
Number of thermostat (for temperature safety)  
Unit cost of flowmeter  
number  
number  
number  
number  
number  
number  
number  
number  
€/unit  
2
2
2
1
10  
10  
1
1
5000  
500  
1500  
1500  
100  
500  
500  
100  
2
Unit cost of PT100 probes  
€/unit  
Unit cost of pressure sensors  
€/unit  
Unit cost of level sensor  
€/unit  
Unit cost of thermocouples  
€/unit  
Unit cost of pressostat  
€/unit  
Unit cost of thermostat  
€/unit  
The connection cost  
€/line  
Number of analog card required  
number  
€/unit  
Cost of analog card  
500  
700  
7
Cost per day per person for control software modification and final tests  
€/day/person  
Number of person-day required for control software modification and final tests number  
Cost per km for fuel and toll  
€/km  
€/day  
€/hour  
km  
0.485  
165.98  
22.43  
500  
500  
1050  
680  
50  
The cost per day (for truck + structure costs)  
The cost per hour (for driver)  
The average distance of the transport of solid filler  
Distance travelled by truck per day  
The average distance of the transport of HTF (except water)  
The cost of a mobile lift crane (30 ton) on truck with driver  
The cost of labour per hour  
km/day  
km  
€/day  
€/hour  
kW  
Electric oven capacity  
400  
30,000  
10000  
3000  
10000  
Rental charge of oven for first week  
Rental charge of oven for other week  
Rental cost of diesel generator  
€/week  
€/week  
€/week  
Cost of auxiliary components  
Variables (when HTF is Molten salt)  
The year under consideration for analysis  
Cost of Quartzite stones  
Unit  
year  
Default value  
2017  
122  
278  
452  
2
€/ton  
€/ton  
€/ton  
Cost of Basalt stones  
Cost of Sand  
DMT height to diameter ratio  
The maximum limit of DMT height  
DMT height to diameter ratio  
The maximum limit of DMT height  
Safety margin for hot temperature  
Unit cost of flowmeter  
number  
m
12  
number  
2
m
oC  
12  
20  
€/unit  
€/unit  
5000  
500  
Unit cost of PT100 probes  
Unit cost of pressure sensors  
Unit cost of level sensor  
€/unit  
€/unit  
€/unit  
€/unit  
€/unit  
€/unit  
1500  
1500  
100  
Unit cost of thermocouples  
Unit cost of pressostat  
500  
Unit cost of thermostat  
500  
Cost of analog card  
500  
Total cost of analog card  
1000  
4900  
680  
Total cost for control software modification and final tests  
The cost of a mobile lift crane (30 ton) on truck with driver  
The cost of labour per hour  
€/day  
€/hour  
kW  
50  
Electric oven capacity  
400  
Rental charge of oven for first week  
Rental charge of oven for other week  
Rental cost of diesel generator  
Cost of auxiliary components  
€/week  
€/week  
€/week  
30,000  
10000  
3000  
10000  
Mandatory input (For the analysis of HPHE)  
1
2
3
. HPHE capacity, kW  
. Cold side inlet temperature, C  
. Cold side exit temperature, C  
o
o
Analysing the user data, the tool will provide details of HPHE solutions. The key information that will be reported  
are given in the following table:  
Item  
Unit  
kg  
Amount used  
Unit cost, € Cost, €  
Carbon steel  
3
04 stainless steel  
kg  
Distilled water  
kg  
Aluminium paint  
litre  
Direct material cost  
Manufacture, assemble pipes  
Direct labour  
number  
labour-day  
kwh  
Electrical energy  
Transportation of material to HPHE manufacturing plant tkm  
Transportation of HPHE to site  
Direct transportation cost  
Total variable cost, €/unit  
Manufacturing overhead over variable cost  
Profit margin over variable cost  
Total cost of HPHE, €  
tkm  
Specific cost of HPHE, €/kw  
Dimension  
Length  
meter  
Width  
meter  
meter  
m3  
Height  
Volume  
Assumptions made under the submodule of “HPHE Analysis(The corresponding values can be edited through  
admin panel) are listed in the following table:  
Variables  
Unit  
Default value  
20  
o
Safety margin for acid dew point temperature, C  
C
Length of each pipe, meter  
meter  
meter  
meter  
%
1.57  
0.04  
0.002  
5%  
Diameter of HPHE pipe, meter  
HPHE pipe wall thickness, meter  
Adiabatic section, %  
Maximum capacity of HPHE, kw  
Minimum capacity of HPHE, kw  
HPHE working fluid filling rate, %  
kw  
800  
50  
kw  
%
60%  
10  
o
Minimum temperature difference for heat transfer to cold stream, C  
Minimum clearance from side wall to pipe, meter  
Longitudinal pitch factor with respect to pipe diameter, number  
Transverse pitch factor with respect to pipe diameter, number  
Thickness of side plates of HPHE, meter  
Thickness of separator plate of HPHE, meter  
Mass multiplication factor for HPHE, number  
Cost of carbon steel, €/kg  
C
meter  
number  
number  
meter  
meter  
number  
€/kg  
0.02  
1.8  
1.8  
0.005  
0.005  
1.30  
0.8  
Cost of SS304, €/kg  
€/kg  
2.9  
Cost of manufacturing each heat pipe, €/piece  
Cost of distilled water, €/kg  
€/piece  
€/kg  
10  
1.6  
Direct labour- HPHE capacity curve slope, number  
Labour rate, €/ Labour-day  
number  
€/ Labour-day  
number  
€/kwh  
micron  
%
0.08  
140  
2.75  
0.03  
25  
Electricity consumption factor with respect to HPHE capacity, number  
Electrical energy price, €/kwh  
Paint thickness for HPHE side plates, micron  
paint efficiency, %  
80%  
35  
Cost of paint, €/litre  
€/litre  
€/tkm  
km  
Transportation cost rate for material supply to HPHE plant, €/tkm  
Average transport distance for HPHE material supply, km  
Transportation cost rate to deliver HPHE to site, €/tkm  
Average transport distance of HPHE to site, km  
1.8  
200  
3.2  
€/tkm  
km  
500  
0.1  
Manufacturing overhead factor with respect to variable cost for HPHE, number number  
Profit factor over variable cost of HPHE, number number  
0.3  
For both stand alone and cascaded solution the maximum and minimum capacity of HPHE are considered to be 800  
kW and 50 kW respectively. The maximum capacity of TES is around 6.4 MWh.  
If the waste heat flow rate is greater than 800 kW, then two HPHEs can be used in parallel to recover waste heat from  
the flue gas exiting the furnace. If there are sufficient waste heat left after the first stage of heat recovery, then a  
secondary stage of heat recovery application can be deployed. As the source of waste heat is of intermittent in nature,  
each of the stages will have a combination of HPHE and TES, hence, two loops will be formed- one is primary loop  
and the other is secondary loop where the primary loop will be operated at relatively higher temperature (i.e., T_hot  
&
T_cold).  
Figure: Schematic diagram of cascaded solution  
o
o
For a situation, 350 C<= Flue gas temperature =< 700 C, there will be total 32 number of possible solutions.  
o
o
For a situation, 200 C<= Flue gas temperature < 350 C, there will be total 12 number of possible solutions  
Summary of the cascaded solutions are outlined in the following table:  
Primary loop  
Secondary loop  
SL  
No. Solution HPHE 1 HPHE 2 DMT  
T_hot T_cold  
DMT  
T_hot T_cold  
1
2
3
4
5
6
7
8
9
111a  
111b  
111c  
111d  
112a  
112b  
112c  
112d  
121a  
HPHE 1 HPHE 2 Hitec + Quartzite  
300  
300  
300  
300  
300  
300  
300  
300  
300  
300  
170 HPHE 3 Thermal oil + Quartzite  
170 HPHE 3 Thermal oil + Quartzite  
150  
150  
80  
80  
80  
80  
40  
40  
40  
40  
80  
80  
80  
80  
40  
40  
40  
40  
80  
80  
80  
80  
40  
40  
40  
40  
HPHE 1 HPHE 2 Hitec + Quartzite + Sand  
HPHE 1 HPHE 2 Hitec + Quartzite  
170 HPHE 3 Thermal oil + Quartzite + Sand 150  
170 HPHE 3 Thermal oil + Quartzite + Sand 150  
HPHE 1 HPHE 2 Hitec + Quartzite + Sand  
HPHE 1 HPHE 2 Hitec + Quartzite  
170 HPHE 3 Water (SMT)  
90  
90  
HPHE 1 HPHE 2 Hitec + Quartzite  
170 HPHE 3 Water + Quartzite  
170 HPHE 3 Water (SMT)  
HPHE 1 HPHE 2 Hitec + Quartzite + Sand  
HPHE 1 HPHE 2 Hitec + Quartzite + Sand  
HPHE 1 HPHE 2 Thermal oil + Quartzite  
HPHE 1 HPHE 2 Thermal oil + Quartzite  
90  
170 HPHE 3 Water + Quartzite  
170 HPHE 3 Thermal oil + Quartzite  
90  
150  
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
0 121b  
1 121c  
2 121d  
3 122a  
4 122b  
5 122c  
6 122d  
7 131a  
8 131b  
9 131c  
0 131d  
1 132a  
2 132b  
3 132c  
4 132d  
170 HPHE 3 Thermal oil + Quartzite + Sand 150  
170 HPHE 3 Thermal oil + Quartzite 150  
170 HPHE 3 Thermal oil + Quartzite + Sand 150  
HPHE 1 HPHE 2 Thermal oil + Quartzite + Sand 300  
HPHE 1 HPHE 2 Thermal oil + Quartzite + Sand 300  
HPHE 1 HPHE 2 Thermal oil + Quartzite  
HPHE 1 HPHE 2 Thermal oil + Quartzite  
300  
300  
170 HPHE 3 Water (SMT)  
90  
90  
170 HPHE 3 Water + Quartzite  
170 HPHE 3 Water (SMT)  
HPHE 1 HPHE 2 Thermal oil + Quartzite + Sand 300  
HPHE 1 HPHE 2 Thermal oil + Quartzite + Sand 300  
90  
170 HPHE 3 Water + Quartzite  
170 HPHE 2 Thermal oil + Quartzite  
170 HPHE 2 Thermal oil + Quartzite  
90  
HPHE 1  
HPHE 1  
HPHE 1  
HPHE 1  
HPHE 1  
HPHE 1  
HPHE 1  
HPHE 1  
Hitec + Quartzite  
300  
300  
300  
300  
300  
300  
300  
300  
150  
150  
Hitec + Quartzite + Sand  
Hitec + Quartzite  
170 HPHE 2 Thermal oil + Quartzite + Sand 150  
170 HPHE 2 Thermal oil + Quartzite + Sand 150  
Hitec + Quartzite + Sand  
Hitec + Quartzite  
170 HPHE 2 Water (SMT)  
170 HPHE 2 Water + Quartzite  
170 HPHE 2 Water (SMT)  
170 HPHE 2 Water + Quartzite  
90  
90  
90  
90  
Hitec + Quartzite  
Hitec + Quartzite + Sand  
Hitec + Quartzite + Sand  
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
5 133a  
6 133a  
7 133a  
8 133a  
9 134a  
0 134b  
1 134c  
2 134d  
3 211a  
4 211b  
5 211c  
6 211d  
7 221a  
8 221b  
9 221c  
0 221d  
1 23a  
HPHE 1  
HPHE 1  
HPHE 1  
HPHE 1  
HPHE 1  
HPHE 1  
HPHE 1  
HPHE 1  
Thermal oil + Quartzite  
Thermal oil + Quartzite  
300  
300  
170 HPHE 2 Thermal oil + Quartzite  
170 HPHE 2 Thermal oil + Quartzite + Sand 150  
170 HPHE 2 Thermal oil + Quartzite 150  
170 HPHE 2 Thermal oil + Quartzite + Sand 150  
150  
80  
80  
80  
80  
40  
40  
40  
40  
30  
30  
30  
30  
30  
30  
30  
30  
Thermal oil + Quartzite + Sand 300  
Thermal oil + Quartzite + Sand 300  
Thermal oil + Quartzite  
Thermal oil + Quartzite  
300  
300  
170 HPHE 2 Water (SMT)  
170 HPHE 2 Water + Quartzite  
170 HPHE 2 Water (SMT)  
170 HPHE 2 Water + Quartzite  
80 HPHE 3 Water (SMT)  
80 HPHE 3 Water (SMT)  
80 HPHE 3 Water + Quartzite  
80 HPHE 3 Water + Quartzite  
80 HPHE 2 Water (SMT)  
80 HPHE 2 Water (SMT)  
80 HPHE 2 Water + Quartzite  
80 HPHE 2 Water + Quartzite  
40  
90  
90  
90  
90  
80  
80  
80  
80  
80  
80  
80  
80  
Thermal oil + Quartzite + Sand 300  
Thermal oil + Quartzite + Sand 300  
HPHE 1 HPHE 2 Thermal oil + Quartzite  
HPHE 1 HPHE 2 Thermal oil + Quartzite + Sand 150  
HPHE 1 HPHE 2 Thermal oil + Quartzite 150  
HPHE 1 HPHE 2 Thermal oil + Quartzite + Sand 150  
150  
HPHE 1  
HPHE 1  
HPHE 1  
HPHE 1  
Thermal oil + Quartzite 150  
Thermal oil + Quartzite + Sand 150  
Thermal oil + Quartzite 150  
Thermal oil + Quartzite + Sand 150  
HPHE 1 HPHE 2 Water (SMT)  
90  
90  
90  
90  
2 23b  
HPHE 1 HPHE 2 Water + Quartzite  
40  
3 24a  
HPHE 1  
HPHE 1  
Water (SMT)  
40  
4 24b  
Water + Quartzite  
40  
According to specific cost of WHR solution, the solutions will be ranked for a specific scenario of waste heat quality  
and quantity.  
2
.4. Module 4- Financial performance  
For each of the WHR solution identified by module 3, the tool will provide informed investment decision support on  
the marginal investment (on WHR technology) through evaluating following financial parameters:  
1
2
3
4
5
t
. Levelised cost of thermal energy (LCOE ),  
. Payback period,  
. Net present value (NPV),  
. Internal rate of return (IRR),  
. Return on investment (ROI) etc.  
To account the uncertainty of different variables such as retrofitting factor, discount rate etc., the tool will perform  
sensitivity analysis to determine the impact of these factors on LCOE , payback period, NPV, IRR, ROI;  
t
Assumptions made under the module 4 (The corresponding values can be edited through admin panel) are listed in  
the following table:  
Variables  
Unit  
Default value  
Plant downtime  
%
10%  
24  
Daily operation hours  
Discount rate  
hour/day  
%
5%  
20  
Service life  
Year  
Retrofitting factor  
number  
€/kWh  
%
1
Natural gas price  
0.0313  
10%  
4
Installation & commission cost with respect to capex  
Number of times of HTF preheating operation per year  
Cost of electricity  
number  
€/kWh  
€/hour  
0.07  
50  
The cost of labour per hour  
2
.5. Module 5- Environmental performance  
For each of the WHR solution identified by module 3, the tool will provide the information regarding the resource  
and energy consumed during the respective manufacturing and use phases. The key information regarding resource  
consumption that will be available is illustrated in the following table  
Amount  
Resources  
For HPHE  
Carbon steel, kg  
3
04 stainless steel, kg  
Distilled water, kg  
Aluminium paint, litre  
For TES  
Carbon steel, kg  
3
04 stainless steel, kg  
HTF, kg  
Quartzite, kg  
Sand, kg  
For piping & instrumentation  
Carbon steel, kg  
3
04 stainless steel, kg  
HTF, kg  
Finally, for each of the WHR solution identified by module 3, the tool will provide the potential emission saving  
opportunities created by the application of the respective WHR solution.